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A simple model of erosion of cold electrodes which considers the step motion of arc spots is proposed. It is
assumed that the macroscopic destruction of an electrode begins with fusion of the electrode in the spot. The
basic thermal characteristics of the arc spot, the thermophysical properties of the electrode material, and the
regime of the electric arc are taken into account. The notion of the effective erosion enthalpy which summa-
rizes all the elementary processes leading to the erosion of the electrode is used. The model has successfully
been applied to arc spots on the cathodes of electric-arc heaters. A comparison with the earlier model of
continuous motion of the spot has been made.

Introduction. The problem of erosion of electrodes is pressing for a number of applications of an electric arc
because of the limited service life of plants, in particular, electric-arc heaters and electric switches. In electric-arc heat-
ers, the process of transfer of a current between the arc and the cold electrodes manufactured from materials with a
low fusion temperature, for example, from copper, is carried out in the contracted regime. Virtually the entire current
traverses a bounded region on the electrode surface which is characterized by a very high density of the current and
the heat flux and is known as the arc spot. To decrease erosion in electric-arc heaters with cold electrodes one uses
nonstationary spots, causing them to move rapidly by means of a magnetic field or a vortex gas spot. The most im-
portant is investigation of the erosion of a cold cathode since it is higher than that in the anode.

Owing to its importance, the issue of the density of a current in a cathode spot remains the subject of con-
tinuous discussions. The data on the current density in cathode spots on copper electrodes are very uncertain and con-
tradictory because of the large spread — from 107 to 1012 A⋅m−2 (see, for example, [1–3]). The use of equipment
with a high temporal and spatial resolution [1–3] has made it possible to investigate the internal structure of a spot
consisting of short-lived mobile coexisting arc fragments or microspots with a dimension of less that 1 µm. Moreover,
with development of the technology of high-speed optical recording, one discloses increasingly smaller details of the
complex hierarchic microstructure of a cathode spot. Some of the modern experimental data and theoretical results lead
to current densities of 1012 to 1013 A⋅m−2 in cathode microspots, whereas the data time- and space-averaged using in-
strumental methods yield a value of about 109 A⋅m−2 (see, for example, [1]).

Despite the complex dynamic internal structure of a spot, one can apply to engineering calculations the re-
placement (used earlier (see [4, 5])) of the actual arc spot by a single surface heat source with a uniform distribution
of the heat flux which is obtained by averaging the thermal fields of individual microspots over space and time: q0 =
jU = 4Q0

 ⁄ πd2. For this reason, here we call j and U the "effective" current density (instead of the real current den-
sity) and the volt-equivalent of the heat flux in the arc spot (U = Q0

 ⁄ I) respectively.
The continuous movement of an arc spot considered in [4] can be ensured for each type of electrode material

only by a specially selected chemical composition of a plasma-forming gas (see [6] and the references therein). In [6],
it has been assumed that there exists special "surface resistance" which leads to a step-by-step (with stops) movement
of an arc spot and as a consequence to an increase in the erosion due to the increased time of residence of the spot
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at the point of stop. Thus, the continuous movement of an arc spot can be considered as one ideal limiting regime.
The other limiting regime is the regime (subsequently referred to as a "step" regime) of motion of the spot [7, 8]. In
actual practice, the motion of the arc spot in an electric-arc heater has a complex character, as a rule, and it is a com-
bination of both regimes. In the present work, attention is focused on studying the ideal step movement of the arc spot
and its influence on the erosion of the electrodes in an electric-arc heater. This model can be applied to both the cath-
ode and the anode of the electric-arc heater but for the sake of brevity here we will consider its application just to the
cathode.

In [4], we have proposed a single parameter (called the effective enthalpy of erosion hef) to allow for all the
processes leading to erosion; erosion is considered as the process of thermal ablation of the electrode material under
the action of intense heat fluxes. This approach is analogous to that used in the technique of testing of materials for
protection of spacecraft at their entry into the atmosphere [9, 10], where the resistance of a material to thermal damage
is characterized by the effective enthalpy of ablation determined according to the equation

hef = 
Qin − Qout

G
 . (1)

For a cold copper cathode in the electric-arc heater we disregard the removal of heat by radiation and the Joule heat-
ing (see [11]); instead, we allow for the removal of heat from the arc spot to the body of the electrode by conduction,
taking that Q0 − Qr = Qer.

Theoretical Approach. Similarly to [4, 5], we consider the heating of the cold-cathode surface by an arc
spot, taking a uniformly distributed heat flux of density q0 which is prescribed within a circularly shaped arc spot of
diameter d (boundary conditions of the second kind according to [12, 13]). We assume that, according to [11], the
time of stay of the spot at a given point τs satisfies the condition with respect to the Fourier number Fo = aτs

 ⁄ d2 =
1. Satisfaction of this condition enables us to use a one-dimensional heat-conduction equation for description of the
heating of the electrode in the spot. The electrode is considered as a semibounded body, since d << b. Part of the
mathematical formalism is the same as has been presented in [4, 5] for the model of continuous motion of the spot.
Therefore, we will not repeat it here and begin with the equation that yields the density of the heat flux qr removed
from the arc spot to the body of the electrode after the beginning of fusion τ ≥ τ0 (see [4, 5] for details):

qr = 
2q0

π
 arctan √τ0

τ − τ0
 , (2)

where

τ0 = 
π
4a

 




(Tf − T0) λ
q0





2

(3)

has been obtained in [4, 5].
We assume that, to the instant of time τ0, in accordance with the boundary conditions of the second kind, the

heat removal to the body of the electrode by conduction is equal to the heat supply from the arc spot (qr = q0 for
τ < τ0). Beginning with τ = τ0 we assume that a constant fusion temperature T = Tf is maintained on the surface above
the spot, which corresponds to boundary conditions of the first kind (see [12, 13]). Using Eq. (2) we calculate the inte-
gral heat removal to the body of the electrode for τ0 < τ < τs.

Let us consider an ideal step motion of the spot, assuming that it exists only at discrete points on the elec-
trode surface at a constant distance (equal to the step length L) between them. We will assume that the time of move-
ment of the spot from one point of stop to another is negligibly small as compared to the time of stay of the spot at
a fixed point τs. Then τs can be represented as

τs = L ⁄ v . (4)

The average velocity of movement of the arc spot can be obtained, for example, by measuring the rotational speed of
the arc in the interelectrode gap.
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To calculate the integral heat removal per unit area of the arc spot (in J⋅m−2) from the instant of the begin-
ning of fusion to an arbitrary instant of time τs we must integrate relation (2) with respect to time going from τ0 to
τs. For it we introduce the following notation:

qr


 τ0

τs B 
2q0

π
 ∫ 

τ0

τs

arctan √τ0

τ − τ0
 dτ . (5)

Integration of (5) leads to

qr


 τ0

τs = 
2q0

π
 




π
2

 (τs − τ0) + √τ0 (τs − τ0)  − τs arctan √τs − τ0

τ0




 . (6)

The total specific heat removal (in J⋅m−2) per unit area of the arc spot from the beginning of heating to the instant of
time τs, including the initial period τ < τ0, is given by the relation

qr

 τ=0

τs  = q0τ0 + qr τ0

τs . (7)

Substituting (6) into (7) and dividing the result by τs, we obtain the heat removal averaged over the time τs per unit
area of the arc spot (in W⋅m−2), which is equal to

q
_

r = q0 







1 + 

2

π
 







√τ0 (τs − τ0)

τs
 − arctan √τs − τ0

τ0














 . (8)

In accordance with the determination of hef, in our case relation (1) can be written in the form

hef = 
Q0 − Q

__
r

G
 , (9)

where Q
__

r = q
_

rF is the total removal to the body of the electrode by heat conduction calculated over the entire area of
the spot F and averaged over the residence time τs. Then, using Eq. (8), for Q0 = q0F we obtain

Q
__

r = Q0 




1 + 

2

π
 (√ fs (1 − fs) ) − tan

−1
 √1 − fs

fs




 . (10)

Here we introduce the dimensionless parameter of fusion

fs = 
τ0

τs
 . (11)

We will assume the difference between the total heat supply to the arc spot Q0 and the total heat removal
Q
__

r yields the total expenditure of heat on erosion. This heat determining the erosion rate will subsequently be called
the "erosion heat" Q

__
er:

Q
__

er = Q0 − Q
__

r . (12)

Substituting (10) into (12), we obtain that the average erosion heat can be expressed as follows:

Q
__

er = Q0Ws = IUWs , (13)

where
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Ws = 
2

π
 


arctan √1 − fs

fs
 − √fs − (1 − fs)




 . (14)

Using the expression for the mass rate of erosion G = gI, written in terms of the specific mass erosion g, and Eqs.
(9), (12), and (13), we obtain the simple expression for the specific mass erosion

g = g0 + 
UWs

hef
 . (15)

Here we have introduced the additional term g0 to allow for the fact that, even in the absence of macroerosion when
Ws = 0, we have the nonvanishing minimum value of the erosion g = g0 observed experimentally. This residual ero-
sion is attributable to the nonvanishing erosion action of microspots. As we will see subsequently in investigating the
dependence of the erosion on the current, microerosion is observed at low currents, giving an approximately constant
value of g0. We note that

UWs = (g − g0) hef , (16)

i.e., the group UWs is a linear function of g. Plotting UWs calculated from experimental data as a function of g meas-
ured experimentally on the graph, we can obtain the erosion parameters g0 and hef just in the same manner as in [4,
5].

Thus, the main parameters determining erosion in the step model of erosion are the arc current I, the elec-
trode-surface temperature T0, and the residence time of the arc spot τs.

Substituting the expression for τ0 from (3) into (11), for d = 2√I ⁄ πj  and q0 = jU we obtain the following
relation:

fs = 
π

4aτs
 




(Tf − T0) λ
jU





2

 . (17)

Using τs according to (4) and introducing the dimensionless step length n

n = L ⁄ d , (18)

we have

fs = 
π1.5

vλ2
 (Tf − T0)2

8aj
1.5

U
2
I
0.5

n
(19)

or

fs = 
π1.5

vλ2
 (Tf − T0)2

8ajs
1.5

U
2
I
0.5

 , (20)

where js as a new, imaginary current density for step motion is determined from the relation

js = jn
2 ⁄ 3 . (21)

Expression (17) will be useful in calculating the parameter fs for immobile (pulse) arc spots (v = 0), for example, in
electroerosion treatment, whereas Eqs. (19) and (20) will be useful in calculating moving arc spots in electric-arc heat-
ers. We note that j here denotes the effective current density, which does not necessarily coincide with the density de-
termined from the current-conducting area of the spot. Both j and js extend the notion of the ordinary current density,
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taking into consideration primarily the thermal effect of the spot. Moreover, js also allows for the features of the step
motion of the spot. Expressions (19) and (20), owing to the similarity of their form to that of the expression for f, are
the most convenient for comparative analysis of the models of continuous and step spot motions.

The analysis of the function Ws shows that 1 ≥ Ws ≥ 0 for 0 ≤ fs ≤ 1. We assume that Ws B 0 for fs > 1. Thus,
we have two regions for fs: the region of microerosion for fs > 1 and the region of macroerosion for 0 ≤ fs ≤ 1. Re-
cording simultaneously all the determining parameters involved in the expression for fs(I, T0, v), for the regimes in
which the condition fs = 1 is fulfilled we can calculate the effective current density, using formula (17), i.e.,

j = 
π0.5λ (Tf − T0)

2a
0.5τs

0.5
U

(22)

or

j = 
π

4
 




λ4

a
2 

v
2
 (Tf − T0)4

U
4
In

2





1 ⁄ 3

 . (23)

Equation (22) will be useful in calculating the effective current density j in immobile spots (v = 0) in the processes
of electroerosion treatment, whereas Eq. (23) will be useful in calculating moving spots in electric-arc heaters. From
these equations we see that in step motion it is necessary to know τs or n for determination of the effective value of
the current density j that is closer to the true value and not the "imaginary" value. In the case where n is unknown
or one takes n = 1 in Eq. (23), we obtain only the imaginary current density related to the effective j by relation (21).

The dimensionless energy of erosion Ws(fs) plays the same role in the step model as the corresponding pa-
rameter W(f) in the continuous-motion model. For further comparison of Ws and W we recall here the expression for
W (see [4])

Fig. 1. Dimensionless energy of erosion W for the continuous (dotted line) and
step motion Ws (solid lines) for different values of n (shown in the figure);
dashed curves, Ws − W; inset, parameter Ws as a function of n; numbers of the
curves, normalized velocity of the arc s = vI−0.5.
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W = 
2
π

 

arcsin β + fβ − 

4
π

 β (√ f  ω1 + ω2)

 , (24)

where β, ω1, and ω2 are functions of the dimensionless parameter f which is coincident with fs at n = 1 (see (19)).
Figure 1 shows W and Ws and the difference Ws − W (dashed curves) as a function of f for different values

of n. It is seen that erosion for the step motion of the spot is always higher than that for the continuous motion, ex-
cept for the limiting points fs = 0 or fs = 1, where the difference is Ws − W = 0. Furthermore, this difference increases
rapidly with n. The inset of Fig. 1 shows the dimensionless erosion energy Ws for a copper cathode at T0 = 350 K
as a function of the dimensionless step length for different values of the normalized velocity of the arc s (see [4, 5])
determined as s = v ⁄ √ I . It is seen that the erosion grows with both increase in the dimensionless step length and de-
crease in the normalized velocity s. In the calculations, we used U =  6.78 V, j = 1.35⋅109 A⋅m−2, λ = 377
W⋅m−1⋅K−1, a = 1⋅10−4 m2⋅sec−1, T0 = 350 K, and Tf = 1356 K (see [4, 5]).

Comparison with Experiment for Electric-Arc Heaters. To compare the models of step and continuous mo-
tion of the spot we have used the experiments on investigating the erosion of a copper cathode [1]. Therefore, here
we will describe in detail neither the experiments themselves nor the setup. We only note that this was a setup with
a coaxial arrangement of the electrodes and magnetic movement of the arc without using a vortex gas flow.

Figure 2 gives results of experimental measurements of the specific mass erosion g as a function of the cur-
rent I and (on the inset) the value of the volt-equivalent of the erosion energy Uer = UW calculated for the same ex-
periments for the models of step and continuous motion as a function of g (see Eq. (16)). The data on the current
density are important for theoretical processing of these results. To obtain them we assumed that f = 1 for those ex-

Fig. 2. Specific erosion rate g as a function of the arc current I: 1, 2) inside
diameter of the cathode is 50 mm; 2, 3) "singular" points obtained for constant
operating parameters [2) for a cathode diameter of 50 mm and B = 0.133 T,
3) 90 and 0.03]; C2, calculated curve, according to Eqs. (14), (15), (19), and
(24) for points 2; C3, the same, for points 3; solid curves; step model, dotted
curves, continuous-motion model according to [4]; inset, linear approximation
of the parameter Uer vs. specific erosion g for the model of continuous and
step motion.
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perimental points in Fig. 2 (in the dash-dot frame) where the transition from the lower branch of low erosion to the
upper branch of the intense form of erosion is observed. In this case the current density was calculated from formula
(23), when n = 1, for the step motion. Since the formulas for j are the same for both models, when n = 1, in gener-
alizing these experiments using the step model the only difference was in the expressions for the dimensionless energy
of erosion W and Ws.

In processing these experiments (inset in Fig. 2), we used the same dependences of the current density and
the volt-equivalent on the magnetic field as in [14, 15] in the model of continuous motion: U = 6.25 + 4.28B and js
= (1.282 + 2.6B)⋅109. It is obvious that the results of comparative processing of the same experiments are close for
both models, but the correlation coefficient for the step model is slightly higher than that for the continuous model
(0.95 instead of 0.94). From the linear approximations in the form Uer = f(g) (see [4, 5] for the continuous model)
which are shown in the inset, we obtained the values of q0 and hef. They differ somewhat: hef = 66 MJ⋅kg−1 and g0
= 3.1⋅10−9 kg⋅C−1 for the continuous model as compared to hef = 81 MJ⋅kg−1 and g0 = 2.44⋅10−9 kg⋅C−1 for the step
model. Using the quantities hef and g0, we subsequently calculated the theoretical curves C2 and C3 shown in Fig. 2,
where the solid line is the step model and the dashed line is the continuous model. Both curves are in satisfactory
agreement with the corresponding experimental points.

We note that the results of generalization of the erosion in the form of Uer as a function of g are independent
of the selected value of n since the value of n is reduced in such an approximation as a result of calculations. How-
ever this procedure leaves the real value of the effective current density unknown if the arc motion is step in nature
with a step length of n > 1. To determine j it is necessary to measure n independently, using, for example, optical
methods. Such a measurement must be carried out with an accuracy of the order of the arc-spot diameter. This im-
poses strong restrictions on the spatial and temporal resolution of experimental equipment. For example, for a current
of 1 kA the diameter of the cathode spot is about 1 mm (see [14, 15]). Applying high-speed optical recording to di-
agnostics of the movement of the spot with its average velocity of 100 m⋅sec−1, we must record with a frequency of
100,000 frames per second to obtain a spatial resolution of 1 mm from frame to frame. This is very difficult to im-
plement since, in addition to the high rate of recording, numerous measurements are required because of the random
character of distribution of the quantity n and the need for statistical processing of the data obtained with the aim of
finding n with a satisfactory accuracy.

CONCLUSIONS

We have proposed a model of erosion of electrodes for the step motion of the arc spot. A comparison of the
step and continuous models for the same experimental data demonstrated satisfactory agreement between the two mod-
els. Furthermore, we obtained the important parameters of erosion: the effective enthalpy of erosion hef and the spe-
cific microerosion g0. For the copper cathode of an electric-arc heater these parameters were 66 MJ⋅kg−1 and 3.1
µg⋅C−1 for the continuous-motion model and 81 MJ⋅kg−1 and 2.44 µg⋅C−1 for the step-motion model.

The results of the comparison of the models enable us to infer that whatever the model, the generalizations of
experimental data on erosion are similar since both models are based on the fundamentally identical thermophysical
approach. Furthermore, it was shown that the real value of the current density in the spot in its step motion can be
obtained by thermophysical methods without additional independent diagnostics of the character of movement of the
spot. Nonetheless, if a nearly continuous motion of the arc is ensured in the experiments, we can obtain an effective
current density rather close to the true value. The current density measured by the thermal method in the cathode spot
moving under the action of the magnetic field was D109 A⋅m−2.

The authors express their thanks to A. A. do Prado for his technical assistance in the work. We acknowledge
the financial support provided by CNPq, FAPESP, and FINEP of Brazil.

NOTATION

B, magnetic induction, T; F, area of the arc spot, m−2; Fo, Fourier number; G, mass rate of erosion (ablation),
kg⋅sec−1; I, arc current, A; L, step length, m; q0, density of the heat flux supplied from the arc plasma to the spot,
W⋅m−2; U, volt-equivalent of the heat flux in the arc spot, V; Uer, volt-equivalent of the erosion heat, V; Q0, integral
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heat flux supplied from the arc plasma to the spot, W; Q
__

er, time-averaged expenditure of heat on erosion, W; Qin, heat
flux supplied to the body, W; Qout, heat removal from the material by radiation, W; Qr, integral heat removal to the
electrode by conduction, W; Q

__
r, total heat removal to the electrode, averaged over the residence time, W; R, correla-

tion coefficient; T, temperature, K; T0, surface temperature of the electrode, K; Tf, fusion temperature, K; W and Ws,
dimensionless energies of erosion in the models of continuous and step motion respectively; a, thermal diffusivity,
m2⋅sec−1; b, thickness of the electrode wall, m; d, diameter of the spot, m; f and fs, dimensionless parameter of fusion
in the models of continuous and step motion respectively; g, specific integral erosion, kg⋅C−1; g0, specific mass micro-
erosion, kg⋅C−1; hef, effective enthalpy of erosion, J⋅kg−1; j, effective current density in the arc spot, A⋅m−2; js, imagi-
nary current density for the step motion, A⋅m−2; n, dimensionless length of the arc-spot step, W⋅m−2; qr, heat-removal
density, W⋅m−2; q

_
r, heat removal averaged over the time τs per unit area of the arc spot, W⋅m−2; s, normalized veloc-

ity of the arc, m⋅sec−1⋅A−0.5; v, average velocity of the arc, m⋅sec−1; λ, thermal conductivity, W⋅m−1⋅K−1; τ, time, sec;
τ0, time of heating to the fusion temperature, sec; τs, time of motionless stay of the spot at a given point of the elec-
trode surface — residence time for the step motion, sec. Subscripts: 0, characteristic value of the quantity (for exam-
ple, initial temperature T0, time of heating to the fusion temperate τ0); ef, effective value; er, erosion; f, fusion, in and
out, incoming and outgoing respectively; r, removed; s, parameter for the step motion of the spot.
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